

OF URBAN BUSES USING TRANSIENT HEAVY-DUTY CHASSIS DYNAMOMETER

Kimmo Erkkilä, Nils-Olof Nylund, Markku Ikonen and Juhani Laurikko, VTT Technical Research Centre of Finland VTT Processes, Engines and Vehicles

OUTLINE

- Background
 - HD engine emission legislation
- Advantages of complete vehicle testing (on chassis dynamometer)
- Features of VTT's heavy-duty emission laboratory
- Ongoing transit bus emission evaluation
 - Methodology
 - Results of 2002 and 2003 measurements
 - Conclusions

BACKGROUND

- HD engine emission certification is based on engine testing
 - Engines are run in engine dynamometers using specified load patterns
- In the US: HD Transient cycle used for several years
- In Europe: steady-state testing (ESC) is supplemented by transient testing (ETC, directive 1999/96/EC)
- Transient testing represents real-world conditions better than steady-state
- However, engine testing does not take the whole vehicle into account

BACKGROUND - EUROPEAN HD LEGISLATION

Certification testing according to Directive 1999/96/EC calls for:

From 2000 onwards:

- Diesel engines
 - ETC is required in addition to ESC (and ELR), if advanced emission aftertreatment is used for NO_x and/or PM control
- Natural gas engines
 - ETC only

From 2005 onwards:

- Diesel engines:
 - ETC required for all engines
- Natural gas engines:
 - ETC only

WHY COMPLETE VEHICLE TESTING?

- Engine testing does not account the properties of the vehicle
 - Vehicle weight and loading
 - Vehicle specific driving resistance at different speeds
 - Transmission properties etc.
- Evaluation of in-use vehicle emissions presents a problem
 - Dismounting engines from in-use vehicles for testing is costly
- Do the standardized engine test cycles represent real-life driving?
 - Complete vehicle testing easily enables comparison of different driving patterns
- The rationale for testing complete vehicles and VTT's new heavyduty emissions laboratory were discussed in detail in Ikonen's presentation at DEER 2003

OPERATIONAL REGIMES CERTIFICATION VS. BUS CYCLE

HEAVY-DUTY EMISSION LABORATORY AT VTT MAIN COMPONENTS

- Road-simulation chassis dynamometer for complete vehicle testing
 - In-use vehicle emission performance
 - Evaluation of different real-life driving cycles
 - Emission deterioration evaluation along with vehicle aging
- Transient type engine dynamometer with fast response
 - ETC testing
 - High performance engine testing
- Full-flow CVS system
 - Secondary tunnel
 - Particle collector
- Exhaust emission analyzer set for regulated emissions
- Wide variety of instrumentation for unregulated emission measurements

HEAVY-DUTY EMISSION LABORATORY AT VTT CHASSIS DYNAMOMETER

- Road-simulation chassis dynamometer
 - Manufacturer Froude Consine Ltd, UK
 - Roller diameter 2.5 m
 - Inertia simulation 2 500 60 000 kg
 - Max axle weight 20 000 kg
 - Max tractive force ±20 000 N (speed range 0 - 54 km/h)
 - Max power absorption 300 kW (speed range 54 110 km/h)
 - Fast and precise IGBT control for good transient load response
 - Driver's Aid with programmable driving cycles

CITY BUS EMISSION EVALUATION

- National urban bus emission evaluation
 - Scheduled for 2002 2004
 - Emission factors will be generated for about 35 in-use vehicles
 - Vehicles represent different age groups, fuels and technologies
 - Euro 1 >> Euro 5 / EEV (Environmentally Enhanced Vehicle)
 - Both diesel and natural gas fuels are included
 - Diesel buses with and without exhaust aftertreatment
 - Natural gas buses with aftertreatment, both lean-burn and stoichiometric
 - Regulated emissions (CO, THC, NOX, PM) for all vehicles

CITY BUS EMISSION EVALUATION

- Additional IANGV's assignment with newest-technology CNG and diesel buses
- More comprehensive emission analyses:
 - Particulate size distribution
 - Chemical and biological characterization of particulates
 - Hydrocarbon speciation
 - Aldehydes
 - Semivolatiles
 - Anions (sulfates and nitrates)
- IANGV will publish a full report in October 2004

CITY BUS EMISSION EVALUATION

- Bus selection criteria, for the general part:
 - Most common bus types
 - Several units of same bus type to evaluate consistency
 - A few buses repeatedly every year to evaluate ageing/deterioration
- Bus selection criteria, for the IANGV part:
 - Several newest technology NG buses, both lean-burn and stoichiometric
 - Relevant new diesel counterparts with and without aftertreatment for reference
 - Low mileage and flawless condition required

VEHICLES/IANGV BUS STUDY

Fuel	Brand	Model year	Euro class	Exhaust aftertreatment	Combustion
diesel	С	2003	3	-	diesel
diesel	С	2003	3	oxicat	diesel
diesel	С	2003	3	CRT filter	diesel
CNG	A	2002	3	oxicat	lean-burn
CNG	В	2002	EEV	oxicat	lean-burn
CNG	D	2003	EEV	TWC	lean-mix*)
CNG	E	2004	EEV	TWC	stoichiom.

^{*)} combination of stoichiometric and lean-burn combustion

CITY BUS EMISSION EVALUATION, METHODOLOGY

- Driving cycles
 - Braunschweig bus cycle (European)
 - Orange County bus cycle (US, SAE J2711)
- Vehicle loading
 - Tests with half-loaded vehicles, some checkpoints unloaded
- Test fuels
 - Ultra low sulphur commercial diesel
 - Natural gas of high methane content (98 %), sulphur free (no odorant)

CITY BUS EMISSION EVALUATION, METHODOLOGY

- Braunschweig urban bus cycle
 - duration 1740 s
 - length 10.873 km
 - average speed 22.5 km/h
 - max speed 58.2 km/h share of idle 25%

CITY BUS EMISSION EVALUATION, METHODOLOGY

- Orange County bus cycle
 - duration 1909 s
 - length 10.526 km
 - average speed 19.9 km/h
 - max speed 65.4 km/h
 - share of idle 21%

CO EMISSIONS/IANGV MATRIX

THC EMISSIONS/IANGV MATRIX

HC EMISSIONS/IANGV MATRIX

NO_x EMISSIONS/IANGV MATRIX

PM EMISSIONS/IANGV MATRIX

ALDEHYDE EMISSIONS/IANGV MATRIX

PARTICLE NUMBER SIZE DISTRIBUTION/IANGV MATRIX

AMES MUTAGENICITY/IANGV STUDY

COMPARISON DIESEL, DIESEL + CRT, CNG IANGV STUDY

Items evaluated:

- Carcinogenic PAHs
- NMHC
- $\cdot NO_x$
- NO₂ (tailpipe)
- · CO₂
- Ames mutagenicity
- Formaldehyde (FA)
- · Particle mass (PM)
- Particle numbers (PM#)

CITY BUS EMISSION EVALUATION, CONCLUSIONS

- Both NO_X and PM emissions decrease along with newer Euro standards
 - "real life" emission trends point steadily downwards
 - exceptions can be found as certain bus models don't follow the general trend
- Results of older Euro 1 and Euro 2 buses spread significantly more than newer Euro 3 results
 - higher mileage and inaccurate fuel metering in transient situations
- Good and bad results for CRT buses
 - in some cases poor maintenance or failures caused CRT inactiveness
 - fully working devices give good results, even in the case of high mileage Euro
 2 buses
- No significant difference in aggregate CO₂ emissions between diesel and natural gas buses
 - diesels consume less energy
 - CNG vehicles benefit from fuel chemistry

CITY BUS EMISSION EVALUATION, CONCLUSIONS

- PM emissions of natural gas buses are extremely low
 - independent of technology and mileage
- Stoichiometric NG combustion gives both lowest NO_x and CO₂ values
 - generally lean-burn combustion is claimed to be more fuel efficient
 - great differences in fuel consumption between different CNG buses
- Significant spread in THC emissions of CNG vehicles
 - moderate THC emissions for new CNG vehicles
 - high THC emissions for old CNG buses with ineffective catalysts
 - NMHC part low for all CNG vehicles
- Practically all CNG buses in Europe are catalyst equipped
 - excellent performance regarding unregulated emissions and exhaust toxicity
 - in this respect, the results of the IANGV study differ from many North American studies

ACKNOWLEDGEMENTS - SPONSORS

Sponsors

- Helsinki Metropolitan Area Council (YTV)
- Helsinki City Transport Planning Department (HKL)
- Ministry of Transport and Communications, Finland
- Gasum Oy (the Finnish natural gas company)
- the Swedish National Road Administration (Vägverket)
- International Association of Natural Gas Vehicles (IANGV)
- Vehicles supplied by transport companies and manufacturers

